Home
Class 11
MATHS
[cos[tan^(-1)sin cot^(-1)x]" is equal to...

[cos[tan^(-1)sin cot^(-1)x]" is equal to "],[[" (A) "sqrt((x^(2)+1)/(x^(2)+2))," (B) "sqrt((x^(4)+1)/(x^(4)+2))],[" (C) "sqrt((x^(2)-1)/(x^(2)-2))," (D) "x]]

Promotional Banner

Similar Questions

Explore conceptually related problems

sin cot^(-1) tan cos^(-1) x is equal to :

sin(cot^(-1)(tan(cos^(-1)x))) is equal to a x b sqrt(1-x^(2)) c) (1)/(x) d) none of these

sin[cot^(-1) {tan(cos^(-1)x)}] is equal to

The value of sin cot^(-1)tan cos^(-1)x is equal to:

sin(cot^(-1)(tan(cos^(-1)x))) is equal to a) x b) sqrt(1-x^2) c) 1/x d) none of these

The value of cos [tan^-1 {sin (cot^-1 x)}] is

sin cot ^ (- 1) cos tan ^ (- 1) 2

sin cot ^ (- 1) cos tan ^ (- 1) 2 =

If: cos(tan^(-1)x)=sin (cot^(-1).(3)/(4)), then : x =

tan (cos ^(-1) x) = sin (cot ^(-1) ""(1)/(2))