Home
Class 12
MATHS
[" 53.Let "f(x)=x^(2)+(1)/(x^(2))" and "...

[" 53.Let "f(x)=x^(2)+(1)/(x^(2))" and "g(x)=x-(1)/(x),x in R-{-1,0,1}" .If "h(x)=(f(x))/(g(x))," then the "],[" maximum value of "h(x)" is "],[[" (A) "-3," (B) "-2sqrt(2)," (C) "2sqrt(2)," (JEE "M-]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)= x^(2)+ (1)/(x^(2)) and g(x)= x- (1)/(x), x in R -{-1, 0,1} . If h(x)= (f(x))/(g(x)) then the minimum local value of h(x) is…….

Let f(x)=x^2+(1/x^2) and g(x)=x-1/x xinR-{-1,0,1} . If h(x)=(f(x)/g(x)) then the local minimum value of h(x) is: (1) 3 (2) -3 (3) -2sqrt(2) (4) 2sqrt(2)

Let f(x)=x, g(x)=1//x and h(x)=f(x) g(x). Then, h(x)=1, if

f(x)= x, g(x)= (1)/(x) and h(x)= f(x) g(x). If h(x) = 1 then…….

If f(x)=(x-1)/(x+1), g(x)=1/x and h(x)=-x . Then the value of g(h(f(0))) is:

Given f(x) = (1)/((1-x)) , g(x) = f{f(x)} and h(x) = f{f{f(x)}}, then the value of f(x) g(x) h(x) is

f(x)={(x-1, -1lexlt0),(x^2, 0ltxle1):} and g(x)=sin x. Then find h(x)=f(|g(x)|)+|f(g(x))|

Let f(x)={x-1,-1<=x<0 and x^(2),0<=x<=1,g(x)=sin x and h(x)=f(|g(x)|)+[f(g(x)) Then