Home
Class 11
MATHS
Prove that the maximum value of the func...

Prove that the maximum value of the functions `sin^p thetacos^q` is at `theta=tan^-1(sqrt(p/q)).`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that sin^(p) thetacos^(q)theta attains a maximum when theta=tan^-1sqrt((p/q))

Show that sin^p\ theta\ cos^q\ theta attains a maximum, when theta=tan^(-1)sqrt(p/q) .

Show that sin^(p)theta cos^(q)theta attains a maximum, when theta=tan^(-1)sqrt((p)/(q))

If the maximum value of the expression 1/(5sec^2theta-tan^2theta+4cosec^2theta) is equal to p/q (where p and q are coprime), then the value of (p+q) is

If the maximum value of the expression 1/(5sec^2theta-tan^2theta+4cosec^2theta) is equal to p/q (where p and q are coprime), then the value of (p+q) is

Show that sin^(P) theta cos^(q) theta attains a maximum value, when theta = tan^(-1) sqrt((p)/(q)) .

If sin theta=(p)/(q), then the value of cos theta+sin theta

Show that sin^(p) theta cos^(q) theta , p , q in N attains maximum value when theta = tan^(-1) sqrt((p)/(q)) . Identify if it is a global maxima or not .

If sin theta = p/q then find tan theta .

Prove that for theta = tan^(-1)sqrt((p)/(q)), sin^(p)theta cos^(q)theta is maximum.