Home
Class 12
MATHS
Delta =|(1+a^2+a^4,1+ab+a^2b^2, 1+ac+a^2...

`Delta =|(1+a^2+a^4,1+ab+a^2b^2, 1+ac+a^2c^2), (1+ab+a^2b^2, 1+b^2+b^4, 1+bc+b^2c^2),(1+ac+a^2c^2, 1+bc+b^2c^2, 1+c^2c^4)|` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Delta=|{:(1+a^2+a^4,1+ab+a^2b^2,1+ac+a^2c^2),(1+ab+a^2b^2,1+b^2+b^4,1+bc+b^2c^2),(1+ac+a^2c^2,1+bc+b^2c^2,1+c^2+c^4):}| is equal to

Prove that |(1+a^(2)+a^(4),1+ab+a^(2)b^(2),1+ac+a^(2)c^(2)),(1+ab+a^(2)b^(2),1+b^(2)+b^(4),1+bc+b^(2)c^(2)),(1+ac+a^(2)c^(2),1+bc+b^(2)c^(2),1+c^(2)+c^(4))|=(a-b)^(2)(b-c)^(2)(c-a)^(2)

Sove that |(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2))|^(2)=|(1+a^(2)+a^(4),1+ab+a^(2)b^(2),1+ac+a^(2)c^(2)),(1+ab+a^(2)b^(2),1+b^(2)+b^(4),1+bc+b^(2)c^(2)),(1+ac+a^(2)c^(2),1+ba+b^(2)c^(2),1+c^(2)+c^(4))| and hence show RHS determinent is =(a-b)^(2)(b-c)^(2)(c-a)^(2)

[[ Prove that 1+a^(2)+a^(2)b^(2),1+ab+a^(2)b^(2),1+ac+a^(2)c^(2)1+ab+a^(2)b^(2),1+b^(2)+b^(4),1+bc+b^(2)c^(2)1+ac+a^(2)c^(2),1+bc+b^(2)c^(2),1+c^(2)+c^(2)]]=(a-b)^(2)(b-c)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-a)^(2)(c-

If a, b and c are distinct positive real numbers such that Delta_(1) = |(a,b,c),(b,c,a),(c,a,b)| and Delta_(2) = |(bc - a^2, ac -b^2, ab - c^2),(ac - b^2, ab - c^2, bc -a^2),(ab -c^2, bc - a^2, ac - b^2)| , then

det[[1,a,a^(2)+bc1,b,b^(2)+ac1,c,c^(2)+ab]] is equal to

Prove that: |(a^2+1, ab, ac),(ab, b^2+1, bc),(ac, bc, c^2+1)|=1+a^2+b^2+c^2

Prove that abs{:(a^(2) + 1, ab , ac),(ab, b^(2) + 1, bc),(ca, cb, c^(2) +1):}=1 + a^(2) + b^(2) +c^(2)

|(a^(2)+1,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)|= 1 + a^2 + b^2 + c^2 .