Home
Class 11
MATHS
Prove that, maximum and minimum values o...

Prove that, maximum and minimum values of the function `x^3 -18x^2 +96x` in the interval `(0,9)` are given by `160 and 128` respectively.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum and minimum value of the function f(x)=x^3-6x^2+9x+15 .

Find the maximum or minimum values of the function. y=9-(x-3)^(2)

The Minimum value of the function f(x)=x^(3)-18x^(2)+96x in [0,9]

Find the least value of the function f(x)=x^3-18 x^2+96 x in the interval [0,9] is ?

The maximum and minimum values of x^3-18x^2+96x in interval (0,9) are

The maximum and minimum values of x^3-18x^2+96x in interval (0,9) are

The maximum and minimum values of x^3-18x^2+96x in interval (0,9) are

Find the maximum value of the function f(x)=5+9x-18x^(2)

Obtain the maximum and minimum values of the function cos^(2)x+cosx+3 in the interval 0lexle(pi)/(2) .