Home
Class 12
MATHS
int(pi/4)^(3pi/4)cosx*f(sinx)dx=...

`int_(pi/4)^(3pi/4)cosx*f(sinx)dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi/4) (cos x- sin x) dx + int_(pi/4)^((5pi)/4) (sinx-cosx) dx + int_(2pi)^(pi/4) (cosx- sinx) dx =

int_(pi/4)^((3pi)/4) |sinx| dx =

int_(0)^(pi//4)(cosx-sinx)dx+int_(pi//4)^(5pi//4)(sinx-cosx)dx+int_(2pi)^(pi//4)(cosx-sinx)dx is equal to

int_(0)^(pi//4)(cosx-sinx)dx+int_(pi//4)^(5pi//4)(sinx-cosx)dx+int_(2pi)^(pi//4)(cosx-sinx)dx is equal to

Evaluate: int_(pi//4)^(pi//4)log(sinx+cosx)dx

int_(pi//4)^(3pi//4)(1)/(1+cosx)dx

Evaluate: int_(-pi//4)^(pi//4)log(sinx+cosx)dx

Evaluate int_(-pi//4)^(pi//4)log(sinx+cosx)dx .