Home
Class 12
MATHS
[3x,-x+y,-x+z],[x-y,3y,z-y],[x-z,y-z,3z]...

[3x,-x+y,-x+z],[x-y,3y,z-y],[x-z,y-z,3z]|=3(x+y+z)(xy+yz+zx)

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that : |[x, y, z ],[x^2,y^2,z^2],[x^3,y^3,z^3]|=x y z(x-y)(y-z)(z-x)dot

evaluate: |(3x,-x+y,-x+z),(x-y,3y,z-y),(x-z,y-z,3z)|

evaluate: |(3x,-x+y,-x+z),(x-y,3y,z-y),(x-z,y-z,3z)|

Prove that: |[x,x^2,yz],[y,y^2,zx],[z,z^2,xy]|=(x-y)(y-z)(z-x)(xy+yz+zx)

By using properties of determinants, prove that |[x,x^2,yz],[y,y^2,zx],[z,z^2,xy]|=(x-y)(y-z)(z-x)(xy+yz+zx)

Using the properties of determinants, show that : |[[x^2, y^2, z^2],[yz, zx, xy],[x,y,z]]|= (x-y)(y-z)(z-x)(xy+yz+zx) .

Show that: |[x, y ,z],[x^2, y^2, z^2], [yz, zx, xy ]|=(x-y)(y-z)(z-x).(xy+yz+zx)

Using the properties of determinants, show that: [[x, x^2, yz],[y, y^2, zx],[z, z^2, xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

y+z,x,yz+y,z,xx+y,y,z]|=(x+y+z)(x-z)^(2)

Show that: |[(y+z)^2, xy, zx],[xy, (x+z)^2, yz], [xz, yz, (x+y)^2]|=2xyz(x+y+z)^3