Home
Class 12
MATHS
If f(x)=f(pi+e-x) and inte^pif(x)dx=2/(e...

If `f(x)=f(pi+e-x) and int_e^pif(x)dx=2/(e+pi),` then `int_e^pi xf(x)dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = f(pi + e - x) and int_e^(pi) f(x) dx = 2/(e + pi) , then int_e^(pi) xf(x) dx is equal to

If f(x)=f(pi + e - x) and int_(e)^(pi)f(x)dx=(2)/(e + pi) , then int_(e)^(pi)xf(x)dx is equal to

int_0^(pi/2) e^x dx is equal to

int e^x(f(x)+f'(x))dx is equal to :

int e^x {f(x)-f'(x)}dx= phi(x) , then int e^x f(x) dx is

int e^(x){f(x)-f'(x)}dx=phi(x), then int e^(x)f(x)dx is

The value of int e^(x)[f(x)+f'(x)]dx is equal to -

What is int_(0)^(pi)e^(x) sin x dx equal to ?

int_(0)^( pi)xf(sin x)dx=(pi)/(2)int_(0)^( pi)f(sin x)dx

int_(-pi)^(pi) ( e^(sin x ))/( e^(sinx) + e^(-sinx))dx is equal to