Home
Class 12
MATHS
int(-pi)^pi sinx[f(cosx)]dx is equal to...

`int_(-pi)^pi sinx[f(cosx)]dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(-pi)^(pi) sinx f(cosx)dx is

The value of int_(-pi)^(pi) sinx f(cosx)dx is

int_(0)^(pi//2)|sinx-cosx|dx is equal to

int_(0)^(pi/2) |sinx - cosx |dx is equal to

int_(0)^(pi//4)(cosx-sinx)dx+int_(pi//4)^(5pi//4)(sinx-cosx)dx+int_(2pi)^(pi//4)(cosx-sinx)dx is equal to

int_(0)^(pi//4)(cosx-sinx)dx+int_(pi//4)^(5pi//4)(sinx-cosx)dx+int_(2pi)^(pi//4)(cosx-sinx)dx is equal to

The integral int_(0)^(pi) x f(sinx )dx is equal to

The integral int_(0)^(pi) x f(sinx )dx is equal to

If f(x)=x+sinx , then int_(pi)^(2pi)f^(-1)(x)dx is equal to