Home
Class 12
MATHS
If In=int0^(pi/4) tan^n x dx, where n is...

If `I_n=int_0^(pi/4) tan^n x dx,` where `n` is a positive integer, then `I_10+I_8` is equal to (A) `1/9` (B) `1/8` (C) `1/7` (D) `9`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_n=int_0^(pi/4) tan^n x dx , ( n > 1 and is an integer), then

If I_(n)underset(0)overset(pi//4)inttan^(n) x dx, where n is a positive interger, then I_(10)+I_(8) is

If I_(n)=int_(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then

If I_(n)=int_(0)^(pi//4)tan^(n)x dx , where n ge 2 , then : I_(n-2)+I_(n)=

IF I_n=int_0^(pi//4) tan^n x dx then what is I_n+I_(n+2) equal to

If rArr I_(n)=int_(0)^(pi//4) tan ^(n)x dx , then for any positive integer, n, the value of n(I_(n+1)+I_(n-1)) is,

If rArr I_(n)=int_(0)^(pi//4) tan ^(n)x dx , then for any positive integer, n, the vlau of (I_(n+1)-I_(-1)) is,