Home
Class 12
MATHS
The value of int(pi/6)^(pi/2) ((1+sin2x+...

The value of `int_(pi/6)^(pi/2) ((1+sin2x+cos2x)/(sinx+cosx))dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_((pi)/(6))^((pi)/(2))((1+sin2x+cos2x)/(sinx+cosx))dx is equal to-

If int_(0)^((pi)/(2))(dx)/(1+sin x+cos x)=In2, then the value of int_(0)^((pi)/(2))(sin x)/(1+sin x+cos x)dx is equal to:

The value of int_(-pi/2)^(pi/2) ((1+sin^(2)x)/(1 +pi^(sinx))) dx is

The value of the integral int_(pi/6)^(pi/2) ((1 + sin 2x + cos 2x)/(sin x + cosx)) dx is

The value of the integral int_(pi//6)^(pi//2)((sinx-xcosx))/(x(x+sinx))dx is equal to

int_(-pi//2)^(pi//2)sin^(2)xcos^(2)x(sinx+cosx)dx=

The value of int_(0)^((pi)/(2)) ((sinx+cosx)^(2))/(sqrt(1+sin2x))dx is equal to -

The value of I=int_(0)^(pi//2)((sinx+cos)^(2))/(sqrt(1+sin2x))dx is

The value of I=int_(0)^(pi//2)((sinx+cos)^(2))/(sqrt(1+sin2x))dx is