Home
Class 12
MATHS
I ff((3x-4)/(3x+4))=x+2, x!=4/3,andintf(...

`I ff((3x-4)/(3x+4))=x+2, x!=4/3,andintf(x)dx=Alog|1-x|+B x+C` then ordered pair of (A,B)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let y=(2^(log_(2^(1//4))x)-3^(log_(27) (x^(2)+1)^(3))-2x)/(7^(4 log_(4 9)x)-x-1) and (dy)/(dx)=ax+b , the ordered pair (a, b) is

Let y=(2^(log_(2^(1//4))x)-3^(log_(27) (x^(2)+1)^(3))-2x)/(7^(4 log_(4 9)x)-x-1) and (dy)/(dx)=ax+b , the ordered pair (a, b) is

Let y=(2^(log_(2^(1//4))x)-3^(log_(27) (x^(2)+1)^(3))-2x)/(7^(4 log_(4 9)x)-x-1) and (dy)/(dx)=ax+b , the ordered pair (a, b) is

If int((3x+4))/((x^(3)-2x-4))dx=Alog|x-2|+Blog(f(x))+c , then

If int((3x+4))/((x^(3)-2x-4))dx=Alog|x-2|+Blog(f(x))+c , then

It int (3x-2)/((x-1)(x+2)(x-2))dx=A log |x-1|B log |x+2|+C log |x-3|+C then the ascending order of A,B,C is

If int(2x+1)/((x-1)(x-2)(x-3))dx-Alog|x-1|+Blog|x-2|+Clog|x-3|+C , then the value of A, B and C are respectively.

Let I=int_(a)^(b)(x^(4)-2x^(2))dx . If I is minimum then the ordered pair (a, b) is:

Let I=int_(a)^(b) (x^4-2x^2)dx . If is minimum, then the ordered pair (a, b) is

Let I=int_(a)^(b) (x^4-2x^2)dx . If is minimum, then the ordered pair (a, b) is