Home
Class 12
MATHS
tan^(-1)sqrt(3)-cot^(-1)(-sqrt(3))is equ...

`tan^(-1)sqrt(3)-cot^(-1)(-sqrt(3))`is equal to (A) `pi` (B) `-pi/2` (C) 0 (D) `2sqrt(3)`

Text Solution

AI Generated Solution

To solve the expression \( \tan^{-1}(\sqrt{3}) - \cot^{-1}(-\sqrt{3}) \), we will follow these steps: ### Step 1: Calculate \( \tan^{-1}(\sqrt{3}) \) The value of \( \tan^{-1}(\sqrt{3}) \) corresponds to the angle whose tangent is \( \sqrt{3} \). We know that: \[ \tan\left(\frac{\pi}{3}\right) = \sqrt{3} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)sqrt(3)-sec^(-1)(-2)=(pi)/(3)

cot(pi/2-2cot^(-1)sqrt3)

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to (a) (B) (B) (C) (D) quad (2 pi)/(3)

The value of cos^(-1)sqrt((2)/(3))-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A)(pi)/(3)(B)(pi)/(4)(C)(pi)/(2)(D)(pi)/(6)])

cot^(-1)(-sqrt3)= (a) -pi/6 (b) (5pi)/6 (c) pi/3 (d) (2pi)/3

The value of sin^(-1){cot(sin^(-1)sqrt((2-sqrt(3))/(4))+cos^(-1)(sqrt(12))/(4)+sec^(-1)sqrt(2))} is equal to (pi)/(4) (b) (pi)/(2)(c)0(d)-(pi)/(2)

sum_(n=1)^oo sin^-1( (sqrt(n)-(sqrt(n-1)))/(sqrt((n)(n+1)) )= (A) pi/4 (B) pi/2 (C) - pi/3 (D) pi/3

cos^(-1)(cos(2cot^(-1)(sqrt(2)-1))) is equal to sqrt(2)-1( b) (pi)/(4)(c)(3 pi)/(4) (d) none of these

sin^-1 (-1/2)+tan^-1 (sqrt(3))= (A) -pi/6 (B) pi/3 (C) pi/6 (D) none of these