Home
Class 12
MATHS
[" 9.The line "lx+my-n=0" will be tangen...

[" 9.The line "lx+my-n=0" will be tangent to the "],[" ellipse "(x^(2))/(a^(2))+(y^(2))/(b^(2))=1," if "],[[" (a) "a^(2)l^(2)+b^(2)m^(2)=n^(2)," (b) "al^(2)+bm^(2)=n^(2)],[" (c) "a^(2)l+b^(2)m=n," (d) None of these "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If straight line lx+my+n=0 is a tangent of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, then prove that a^(2)l^(2)+b^(2)m^(2)=n^(2)

The line lx+my=n is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, if

If the line lx+my+n=0 s a tangent to the hyperboal (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , then show that a^(2)l^(2)-b^(2)m^(2)=n^(2)

Show that the line lx + my = 1 will touch the ellipse (x ^(2))/( a ^(2)) + (y ^(2))/(b ^(2)) =1 if a ^(2) l ^(2) + b ^(2)m ^(2) = 1.

The pole of the line lx+my+n=0 with respect to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , is

The pole of the line lx+my+n=0 with respect to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , is

The line lx+my+n=0 is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1. then prove that (a^(2))/(l^(2))+(b^(2))/(m^(2))=((a^(2)-b^(2))^(2))/(n^(2))

If the line lx+my +n=0 touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then

If the line lx+my +n=0 touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then

The st line lx+my+n=0 will be a tangent to the parabola y^(2)=4bx if