Home
Class 12
MATHS
If int0^25e^(x-[x])dx=k(e-1), then the v...

If `int_0^25e^(x-[x])dx=k(e-1)`, then the value of k is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(25)e^(x-[x])dx=k(e-1), then the value of k is equal to

Let I_1=int_0^1e^(x^2)dx and I_2=int_0^(1)2x^(2)e^(x^2)dx then the value of I_1 +I_2 is equal to

Let I_1=int_0^1e^(x^2)dx and I_2=int_0^(12)2^(x^2)e^(x^2)dx then the value of I_1 +I_2 is equal to

If int_0^1e^ (-x^2) dx=a , then find the value of int_0^1x^2e^ (-x^2) dx in terms of a .

If int_0^1e^ (-x^2) dx=a , then find the value of int_0^1x^2e^ (-x^2) dx in terms of a .

If int_0^1(3x^2+2x+k)dx=0, find the value of k

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to