Home
Class 12
MATHS
1/(log3(x+1)) < 1/(2log9sqrt(x^2+6x+9))...

`1/(log_3(x+1)) < 1/(2log_9sqrt(x^2+6x+9))`

Promotional Banner

Similar Questions

Explore conceptually related problems

(log_(3)(x-3))/(x-7)+1=(log_(3)(x-3))/(x-1)h as

If n in N, prove that 1/(log_2x)+1/(log_3x)+1/(log_4x)++(1)/(log_n x)=1/(log_(n !)x)

IF x=198! then value of the expression 1/(log_2x)+1/(log_3x)+...+1/(log_198 x) equals

Solve the following inequalities : log_(1//2)log_3((x+1)/(x-1))ge0

lim_(x rarr 0) (log(1+x))/(3^x-1)=1/(log_(e)(3))

Find the value of x satisfying the equation, sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2

Find the value of x satisfying the equation, sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2

Find the value of x satisfying the equation, sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2

If x=prod_(n=1)^(2000)n , then the value of the expression, 1/(1/((log)_2x)+1/((log)_3x)++1/((log)_(2000)x))i s dot

Find the value of x satisfying the equation,sqrt((log_(3)(3x)^((1)/(3))+log_(x)(3x)^((1)/(3)))log_(3)(x^(3)))+sqrt((log_(3)((x)/(3))^((1)/(3))+log_(x)((3)/(x))^((1)/(3)))log_(3)(x^(3)))=2