Home
Class 12
MATHS
The value of cos^(-1)sqrt(2/3)-cos^(-1)(...

The value of `cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3)))` is equal to (A) `pi/3` (B) `pi/4` (C) `pi/2` (D) `pi/6`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : "cos"^(-1)sqrt((2)/(3))-"cos"^(-1)(sqrt(6)+1)/(2sqrt(3))=(pi)/(6)

The value of cos[cos^(-1)(-(sqrt(3))/(2))+(pi)/(6))]

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(A) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

cos^(-1)(cos((7pi)/6)) is equal to (A) (7pi)/6 (B) (5pi)/6 (C) pi/3 (D) pi/6

The value of cos[cos^(-1) (-sqrt3/2)+pi/6)]

tan^(-1)sqrt(3)-cot^(-1)(-sqrt(3)) is equal to (A) pi (B) -pi/2 (C) 0 (D) 2sqrt(3)

Evaluate cos [(pi)/(6) + cos^(-1) (-(sqrt(3))/(2))]

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(a) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

The value of sin^(-1){cot(sin^(-1)sqrt((2-sqrt(3))/(4))+cos^(-1)(sqrt(12))/(4)+sec^(-1)sqrt(2))} is equal to (pi)/(4) (b) (pi)/(2)(c)0(d)-(pi)/(2)