Home
Class 12
MATHS
Range of the function f (x) = cos^-1 (-...

Range of the function `f (x) = cos^-1 (-{x})`, where `{.}` is fractional part function, is:

Promotional Banner

Similar Questions

Explore conceptually related problems

Range of the function f(x)=({x})/(1+{x}) is (where "{*}" denotes fractional part function)

Domain of the function f(x)=log_(e)cos^(-1){sqrt(x)}, where {.} represents fractional part function

Find the range of f(x)=x-{x} , where {.} is the fractional part function.

The range of y=2^({x}) is , where {.} fractional part function

The function f(x)= cos ""(x)/(2)+{x} , where {x}= the fractional part of x , is a

The function f(x)= cos ""(x)/(2)+{x} , where {x}= the fractional part of x , is a

Statement - 1: The function f(x) = {x}, where {.} denotes the fractional part function is discontinuous a x = 1 Statement -2: lim_(x->1^+) f(x)!= lim_(x->1^+) f(x)

Period of the function f(x)=cos(cos pi x)+e^({4x}), where {.} denotes the fractional part of x, is

Period of the function f(x) = cos(cospix) +e^({4x}) , where {.} denotes the fractional part of x, is