Home
Class 14
MATHS
" afe "ln=int(e^(x))/(x^(n))dx" atte "ln...

" afe "ln=int(e^(x))/(x^(n))dx" atte "ln=(-e^(x))/(k_(1)x^(n-1))+(1)/(k_(2)-1)ln-1,sqrt(10)(k_(2)-k_(1))bar(w)|t|

Promotional Banner

Similar Questions

Explore conceptually related problems

If inte^(x)/(x^(n))dx and -e^(x)/(k_(1)x^(n-1))+1/(k_(2)-1)I_(n-1) , then (k_(2)-k_(1)) is equal to:

int(e^(ln tan^(-1)x))/(1+x^(2))dx

int_1^(e) x^(n) log x dx

If int(2)/(1-x^(4))dx = k log[(1+x)/(1-x)]+tan^(-1)x + c then k=

int((1+log x)^(n))/(x)dx x>(1)/(e) n!=-1

int_(1)^(e )(1)/(x sqrt(log x))dx=

int_(1)^(e^(2))(ln x)/(sqrt(x))dx=

int 2/(1-x^(4)) dx = k log ((1+x)/(1-x)) + tan^(-1)x then k =

Show that int_(e)^(e^(2))(1)/(log x) dx = int_(1)^(2)(e^(x))/(x) dx