Home
Class 12
MATHS
[f^(0)(x)=log(e)((1-x)/(1+x)),|x|<1," th...

[f^(0)(x)=log_(e)((1-x)/(1+x)),|x|<1," then "f((2x)/(1+x^(2)))" is equal to "],[2f(x)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=log_(e)((1-x)/(1+x)),|x|<1, then f((2x)/(1+x^(2))) is equal to:

If f(x)=log_(e)((1-x)/(1+x)),|x| lt 1, " then " f((2x)/(1+x^(2))) is equal to

If f(x)=log_(e)((1-x)/(1+x)),|x| lt 1, " then " f((2x)/(1+x^(2))) is equal to

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

The function f(x)=int_(0)^(x)log_(e)((1-x)/(1+x))backslash dx is

If f(x)=log_(e)((1-x)/(1+x)); prove that f(a)+f(b)=f((a+b)/(1+ab))

If f(x) = log_e ((1-x)/(1+x)) , then f' (0) is

If f(x) = log_e ((1-x)/(1+x)) , then prove that f(x) + f(y) = f((x + y)/(1 + xy))