Home
Class 12
MATHS
If the equation ax^2 +2hxy + by^2 = 0 an...

If the equation `ax^2 +2hxy + by^2 = 0 and bx^2 - 2hxy + ay^2 =0` represent the same curve, then show that `a+b=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

The equations a^2x^2+2h(a+b)xy+b^2y^2=0 and ax^2+2hxy+by^2=0 represent.

the equation ax^(2)+ 2hxy + by^(2) + 2gx + 2 fy + c=0 represents an ellipse , if

the equation ax^(2)+ 2hxy + by^(2) + 2gx + 2 fy + c=0 represents an ellipse , if

ax^(2) + 2hxy + by^(2) + 2 gx + 2fy + c=0 represents two parallel straight lines if

The condition that the equation ax^(2) + 2hxy + by^(2) + 2gx + 2fy +c=0 can take the form ax^(2) - 2hxy + by^(2)=0 , when shifting the origi is

For the equation ax^(2) +by^(2) + 2hxy + 2gx + 2fy + c =0 where a ne 0 , to represent a circle, the condition will be

For the equation ax^(2) +by^(2) + 2hxy + 2gx + 2fy + c =0 where a ne 0 , to represent a circle, the condition will be

For the equation ax^(2) +by^(2) + 2hxy + 2gx + 2fy + c =0 where a ne 0 , to represent a circle, the condition will be

Find dy/dx if ax^2+2hxy+by^2=0