Home
Class 12
MATHS
lim(n rarr oo)n^(2)(x^((1)/(n))-x^((1)/(...

lim_(n rarr oo)n^(2)(x^((1)/(n))-x^((1)/(n+1))),x>0," is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)n^(2)(x^((1)/(n))-x^((1)/((n+1)))),x>0, is equal to (a)0(b)e^(x)(c)(log)_(e)x(d) none of these

If f(x)=lim_(n rarr oo)n^(2)(x^((1)/(n))-x^((1)/(n)+1)),x>0 then int xf(x)dx is

lim_(n->oo)n^2(x^(1/n)-x^(1/((n+1)))),x >0 , is equal to (a)0 (b) e^x (c) (log)_e x (d) none of these

If f(x)=lim_(n rarr oo)n(x^((1)/(n))-1) then for x>0,y>0,f(xy) is equal to

lim_(x rarr oo)(1-x+x*e^((1)/(n)))^(n)

lim_ (n rarr oo) n ^ (2) (x ^ ((1) / (n)) - x ^ ((1) / (n + 1))), x> 0

lim_(n rarr oo)(1+(x)/(n))^(n)

lim_ (n rarr oo) (x ^ (n)) / (n!)

lim_ (x rarr1) (lim_ (n rarr oo) [n ^ (2) (x ^ ((1) / (n)) - x ^ ((1) / (n + 1))) / (x ^ ( 3) -1)])

lim_(x rarr oo) (1+2/n)^(2n)=