Home
Class 14
MATHS
sqrt((1+sin x)/(1-sin x))4...

sqrt((1+sin x)/(1-sin x))4

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt((1+sin x)/(1-sin x))=tan((pi)/(4)+(x)/(2))

The values of x in [-2 pi,2 pi], for which the graph of the function y=sqrt((1+sin x)/(1-sin x))-sec x and y=-sqrt((1-sin x)/(1+sin x)) coincide are

If sqrt((1-sin x)/(1+sin x))=f((pi)/(4)-(x)/(2)) then f=

If y=tan^(-1) sqrt((1-sin 4x)/(1+sin 4x)),"then " dy/dx=

find dy/dx for tan^(-1)[sqrt((1-sin4x)/(1+sin4x))]

Prove the following: cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]=(x)/(2),x(0,(pi)/(4))

Prove the following: cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2),x epsilon(0,(pi)/(4))

Prove the following: cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]=(x)/(2);x in(0,(pi)/(4))

Prove that: cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2),x in(0,(pi)/(4))

Prove that: cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2),x in(0,(pi)/(4))