Home
Class 11
MATHS
" 14.If "sin theta+sin^(2)theta=1," then...

" 14.If "sin theta+sin^(2)theta=1," then the value of the expression "(cos^(2)theta+cos^(4)theta)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin theta + sin^2 theta =1 , then the value of cos^2 theta + cos^ 4 theta is

If sin^(2)theta-cos^(2)theta=(1)/(4) , then the value of (sin^(4)theta-cos^(4)theta) is :

If sin^(4)theta-cos^(4)theta=k^(4) , then the value of sin^(2)theta-cos^(2)theta is

If sin theta + sin^(2) theta =1 then cos^(4) theta + cos^(8) theta + 2 cos^(6) theta =

If 2cos theta+sin theta=1 then the value of 4cos theta+3sin theta is

If (sin theta + cos theta)/(sin theta - cos theta)=3 , then the value of sin^(4)theta - cos^(4)theta is:

If sin theta + cos theta =1, the value of sin theta cos theta is

If cos theta+cos^(2)theta=1 , the value of sin^(2)theta+sin^(4)theta is

If cos theta + sin theta =sqrt2 cos theta , then the value of (cos theta -sin theta)/(sin theta) is