Home
Class 11
MATHS
[" 7.Given "log(3)a=p=log(b)c" and "log(...

[" 7.Given "log_(3)a=p=log_(b)c" and "log_(b)9=(2)/(p^(2))*" If "log_(9)((a^(4)b^(3))/(c))=ap^(3)+beta p^(2)+gamma p+delta(AA p in R-{0)" ,then "],[(alpha+beta+gamma+delta)" equals "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Given log_(3)a=p=log_(b)c and log_(b)9=(2)/(p^(2)) and log_(9)((a^(4)b^(3))/(c))=alpha p^(3)+beta p^(2)+gamma p+delta(AA p=R-{0} then (alpha+beta+gamma+delta) equals to :

log_(2)a=p,log_(4)b=p^(2),log_(c^(2))8=(2)/(p^(3)+1)* If log((c^(8))/(ab^(2)))=(alpha p^(3)-beta p^(2)-gamma p+delta) where alpha,beta,gamma,delta in N, then find the value of (alpha+beta+gamma+delta)

Given that log_(a)x=(1)/(alpha),log_(b)x=(1)/(beta) and log_(c)x=(1)/(gamma) Then find log_(abc)x

Given that log_(p)x=alpha and log_(q)x=beta, then value of log_((p)/(q))x equals

Given log_(a) x=alpha, log _(b) x=beta, log_(c)x =gamma & log_(d) x=delta(x ne 1), a,b,c,d in R^(+)-{1}" then "log_(abcd)x then the value equal to:

If (log_(2)a)/(4)=(log_(2)b)/(6)=(log_(2)c)/(3p) and also a^(3)b^(2)c=1. then the value of p is equal to

If log_(8)p=25backslash and log_(2)q=5, then a.p=q^(15) b.p^(2)=q^(3) c.p=q^(5) d.p^(3)=q

If log_(a)x,log_(b)x,log_(c)x are in A.P then c^(2)=

Show that the sequence log a,log((a^(2))/(b)),log((a^(3))/(b^(2))),log((a^(4))/(b^(3))) forms an A.P.

Let [1,3] be domain of f(x) .If domain of f(log_(2)(x^(2)+3x-2)) is [-alpha,-beta]uu[gamma ,delta]; alpha ,beta ,gamma ,delta>0 then the value of (alpha+beta+2 gamma+3 delta)/(17) is