Home
Class 12
MATHS
lim(x rarr0)(e^(sin x)-1)/(x)=...

lim_(x rarr0)(e^(sin x)-1)/(x)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x rarr 0) (e^(sinx)-1)/(x)

Show that : Lim_(x rarr0)(e^(x)-sin x-1)/(x)=0

lim_(x rarr0)(e^(sin x)-1)/(sin x)

lim_(x rarr0)(e^(sin x)-1)/(sin x)

Compute lim_(x rarr0)(e^(3x)-sin x-1)/(x)

lim_(x rarr0)(a^(sin x)-1)/(sin x)

lim_(x rarr0)((e^(x)-x-1)/(x))

Using lim_(x rarr 0) (e^(x)-1)/(x)=1, deduce that, lim_(x rarr 0) (a^(x)-1)/(x)=log_(e)a [agt0].

The value of lim_(x rarr 0) ((e^(x)-1)/x)