Home
Class 12
MATHS
Let alpha,beta be real numbers such that...

Let `alpha,beta` be real numbers such that all `alpha,beta,alpha+beta,alpha-beta` cannot be odd multiple of `pi` and `3(cosalpha+cosbeta)+1+cos(alpha-beta)=sinalpha.sinbeta` then for those `alpha,beta in R` for which `tan(alpha/a),,tan(beta/2)` are real, which of the following is(are) true?

Promotional Banner

Similar Questions

Explore conceptually related problems

If cosalpha+cosbeta=0=sinalpha+sinbeta, then prove that cos2alpha+cos2beta=-2cos(alpha+beta) .

If5tan alpha tan beta=3((cos(alpha+beta))/(cos(alpha-beta))

If cosalpha+cosbeta=0=sinalpha+sinbeta , then prove that cos2alpha+cos2beta+2cos(alpha+beta)=0

If cosalpha+cosbeta=0=sinalpha+sinbeta , then prove that cos2alpha +cos2beta=-2cos(alpha +beta) .

If cosalpha+cosbeta=0=sinalpha+sinbeta , then prove that cos2alpha +cos2beta=-2cos(alpha +beta) .

If alpha+beta=90^@ and alpha:beta=2:1 then sinalpha:sinbeta=

Prove that: tan(alpha+beta)tan(alpha-beta)=(sin^2 alpha-sin^2 beta)/(cos^2 alpha-sin^2 beta)

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is

cos alpha=(2cos beta-1)/(2-cos beta)(0

If cosalpha+cosbeta=0=sinalpha+sinbeta,cos2alpha+cos2beta is equal to a) -2sin(alpha+beta) b) 2cos(alpha+beta) c) 2sin(alpha-beta) d) -2cos(alpha+beta)