Home
Class 12
MATHS
The value of int0^1lim(n->oo)sum(k=0)^n(...

The value of `int_0^1lim_(n->oo)sum_(k=0)^n(x^(k+2)2^k)/(k!)dx` is:

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1)lim_(n rarr oo)sum_(k=0)^(n)(x^(k+2)2^(k))/(k!)dx is:

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

Find the value of lim_(n rarr oo)sum_(k=1)^(n)(k^(2)+k-1)/((k+1)!) .

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of int_0^1 ( pi_(r=1)^n (x+r)) (sum_(k=1)^n 1/(x+k)) dx