Home
Class 12
MATHS
In a triangle ABC, if sin A sin(B-C)=sin...

In a triangle ABC, if `sin A sin(B-C)=sinC sin(A-B)`, then prove that `cos 2A,cos2B` and `cos 2C` are in AP.

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC , if (sinA)/(sinC)=(sin(A-B))/(sin(B-C)) . Prove that a^2,b^2,c^2 are in A.P.

In any triangle ABC if sin A sin B sin C+ cos A cos B=1 , then show that a:b:c=1:1: sqrt(2) .

In a triangle ABC, if cos A cos B+sin A sin B sin C=1, then a:b:c is equal to

In triangle ABC , prove that cos(A+B)+sinC=sin(A+B)-cosC

If A+B+C=(pi)/(2) , then prove that cos 2A + cos 2B + cos 2C=1+4 sin A sin B sin C .

In a triangle ABC , if cos A cos B + sin A sin B sin C = 1 , then a:b:c is equal to

In a triangle ABC , if cos A cos B + sin A sin B sin C = 1 , then a:b:c is equal to

In Delta ABC , if ( sin A)/(4) = (sin B)/(5) = (sin C)/( 6) then the value of cos A +cos B +cos C =

In triangle ABC if 2sin^(2)C=2+cos2A+cos2B , then prove that triangle is right angled.