Home
Class 12
MATHS
If a > b >0, with the aid of Lagranges m...

If `a > b >0,` with the aid of Lagranges mean value theorem, prove that `n b^(n-1)(a-b)>1.` `n b^(n-1)(a-b)> a^n-b^n > n a^(n-1)(a-b),if0

Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    CENGAGE|Exercise Exercise (Single)|58 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE|Exercise Exercise 5.7|8 Videos
  • 3D COORDINATION SYSTEM

    CENGAGE|Exercise DPP 3.1|11 Videos
  • APPLICATION OF INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|137 Videos

Similar Questions

Explore conceptually related problems

If a>b>0, with the aid of Lagranges mean value theorem,prove that nb^(n-1)(a-b) 1nb^(n-1)(a-b)>a^(n)-b^(n)>na^(n-1)(a-b),quad if 0

If a>b and n is a positive integer,then prove that a^(n)-b^(n)>n(ab)^((n-1)/2)(a-b)

If the geometric mean of a and b is (a^(n+1)+b^(n+1))/(a^(n)+b^(n)) then n = ?

Find n, so that (a^(n+1)+b^(n+1))/(a^(n)+b^(n))(a ne b ) be HM beween a and b.

The algebraic sum of the deviations of a set of n values from their mean is 0( b ) n-1 (c) n (d) n+1

If A=[[a,b],[0,1]] then prove that A^n=[[a^n,(b(a^n-1))/(a-1)],[0,1]]

In the arithmetic mean of a and b is (a^(n)+b^(n))/(a^(n-1)+b^(n-1)) then n= ?

If n. sin(A+2B)=sinA , then prove that: tan(A+B)=(1+n)/(1-n).tanB