Home
Class 12
MATHS
The abscissas of point Pa n dQ on the cu...

The abscissas of point `Pa n dQ` on the curve `y=e^x+e^(-x)` such that tangents at `Pa n dQ` make `60^0` with the x-axis are. `1n((sqrt(3)+sqrt(7))/7)a n d1n((sqrt(3)+sqrt(5))/2)` `1n((sqrt(3)+sqrt(7))/2)` (c) `1n((sqrt(7)-sqrt(3))/2)` `+-1n((sqrt(3)+sqrt(7))/2)`

A

`ln((sqrt3+sqrt7)/(7))and ln((sqrt3+sqrt5)/(2))`

B

`((sqrt3+sqrt7)/(2))`

C

`ln((sqrt7-sqrt3)/(2))`

D

`+-ln((sqrt3+sqrt7)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE|Exercise Exercise (Comprehension)|13 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE|Exercise Exercise 5.8|9 Videos
  • 3D COORDINATION SYSTEM

    CENGAGE|Exercise DPP 3.1|11 Videos
  • APPLICATION OF INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|137 Videos

Similar Questions

Explore conceptually related problems

The abscissas of point P and Q on the curve y=e^(x)+e^(-x) such that tangents at P and Q make 60^(0) with the x -axis are.ln((sqrt(3)+sqrt(7))/(7)) and 1n((sqrt(3)+sqrt(5))/(2))1n((sqrt(3)+sqrt(7))/(2)) (c) 1n((sqrt(7)-sqrt(3))/(2))+-1n((sqrt(3)+sqrt(7))/(2))

sqrt(2)+sqrt(3)+sqrt(7)-(1)/(sqrt(2)+sqrt(3)+sqrt(7))=?

lim_(n rarr oo)((sqrt(n+3)-sqrt(n+2))/(sqrt(n+2)-sqrt(n+1)))

N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(5)+2)-sqrt(3-2sqrt(2)) then the value of N

N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(5)+2)-sqrt(3-2sqrt(2)) then the value of N

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ . . . . .+(1)/(sqrt(n^(2)-1)+sqrt(n^(2))) equals

[ If N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(sqrt(5)+1))-sqrt(3-2sqrt(2)) then N equals [ (A) 1, (B) 2sqrt(2)-1 (C) (sqrt(5))/(2), (D) (2)/(sqrt(sqrt(5)+1))]]

lim_(n rarr oo)(1)/(sqrt(n)sqrt(n+1))+(1)/(sqrt(n)sqrt(n+2))+......+(1)/(sqrt(n)sqrt(4n))

If N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(sqrt(5)+1))-sqrt(3-2sqrt(2)) , then N+2 equals

The sum n terms of the series (1)/(sqrt(1)+sqrt(3))+(1)/(sqrt(3)+sqrt(5))+(1)/(sqrt(5)+sqrt(7))+... is sqrt(2n+1) (b) (1)/(2)sqrt(2n+1)(c)(1)/(2)sqrt(2n+1)-1(d)(1)/(2){sqrt(2n+1)-1}

CENGAGE-APPLICATION OF DERIVATIVES-Exercise (Single)
  1. If x+4y=14 is a normal to the curve y^2=alphax^3-beta at (2,3), then t...

    Text Solution

    |

  2. In the corve represented parametrically by the equations x=2ln cott+1 ...

    Text Solution

    |

  3. The abscissas of point Pa n dQ on the curve y=e^x+e^(-x) such that tan...

    Text Solution

    |

  4. If a variable tangent to the curve x^2y=c^3 makes intercepts a , bonx-...

    Text Solution

    |

  5. Let C be the curve y=x^3 (where x takes all real values). The tangent ...

    Text Solution

    |

  6. The equation of the line tangent to the curve x isn y + x = pi at the ...

    Text Solution

    |

  7. The x-intercept of the tangent at any arbitrary point of the curve a/(...

    Text Solution

    |

  8. At any point on the curve 2x^2y^2-x^4=c , the mean proportional betwee...

    Text Solution

    |

  9. Given g(x) (x+2)/(x-1) and the line 3x+y-10=0. Then the line is

    Text Solution

    |

  10. If the length of sub-normal is equal to the length of sub-tangent at ...

    Text Solution

    |

  11. The number of point in the rectangle {(x , y)}-12lt=xlt=12a n d-3lt=yl...

    Text Solution

    |

  12. Tangent of acute angle between the curves y=|x^2-1| and y=sqrt(7-x^2) ...

    Text Solution

    |

  13. The line tangent to the curves y^3-x^2y+5y-2x=0 and x^2-x^3y^2+5x+2y=0...

    Text Solution

    |

  14. The two curves x=y^2,x y=a^3 cut orthogonally at a point. Then a^2 is ...

    Text Solution

    |

  15. The tangent to the curve y=e^(k x) at a point (0,1) meets the x-axis a...

    Text Solution

    |

  16. The curves 4x^2+9y^2=72 and x^2-y^2=5a t(3,2) touch each other (b)...

    Text Solution

    |

  17. The coordinates of a point on the parabola y^2=8x whose distance from ...

    Text Solution

    |

  18. At the point P(a,a^(n)) on the graph of y=x^(n)(n in N) in the first q...

    Text Solution

    |

  19. Let f be a continuous, differentiable, and bijective function. If the ...

    Text Solution

    |

  20. A point on the parabola y^2=18 x at which the ordinate increases at tw...

    Text Solution

    |