Home
Class 12
MATHS
Consider f(x)=tan^(-1)(sqrt((1+sinx)/(1-...

Consider `f(x)=tan^(-1)(sqrt((1+sinx)/(1-sinx))), x in (0,pi/2).` A normal to `y=f(x)` at `x=pi/6` also passes through the point:

A

`(0,(2pi)/(3))`

B

`((pi)/(6),0)`

C

`((pi)/(4),0)`

D

`(0,0)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|246 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE|Exercise Exercise (Numerical)|19 Videos
  • 3D COORDINATION SYSTEM

    CENGAGE|Exercise DPP 3.1|11 Videos
  • APPLICATION OF INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|137 Videos

Similar Questions

Explore conceptually related problems

Consider f(x)=tan^(-1)(sqrt((1+sin x)/(1-sin x))),x in(0,(pi)/(2))*A normal to y=f(x) at x=(pi)/(6) also passes through the point: (1)(0,0)(2)(0,(2 pi)/(3))(3)((pi)/(6),0)(4)((pi)/(4),0)

sqrt((1+sinx)/(1-sinx))=tan(pi/4+x/2)

If f(x) = tan^(-1)(sqrt((1+sinx)/(1-sinx))), 0 lt x lt pi/2 , then f'(pi/6) is

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

tan^(-1) ((cosx - sinx)/(cosx + sinx)) , 0< x < pi

If y = tan^(-1) sqrt((1-sinx)/(1+sinx)) , then the value of (dy)/(dx) "at x = (pi)/(6) is

Differentiate tan^(-1){sqrt((1+sinx)/(1-sinx))}, -pi/2

Evaluate: inttan^(-1){sqrt(((1-sinx)/(1+sinx)))} dx , -pi//2