Home
Class 12
MATHS
Let [x] denote the greatest integer less...

Let [x] denote the greatest integer less than or equal to x and g (x) be given by`g(x)={{:(,[f(x)],x in (0","pi//2) uu (pi//2","pi)),(,3,x=(pi)/(2)):}`
`"where", f(x)=(2(sin x-sin^(n)x)+|sinx-sin^(n)x|)/(2(sinx-sin^(n)x)-|sinx-sin^(n)x|),n in R^(+)` then at `x=(pi)/(2),g(x)`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let [x] denotes the greatest integer less than or equal to x. If f(x) =[x sin pi x] , then f(x) is

Let [x] denote the greatest integer less than or equal to Then: lim_(x to 0) (tan (pi sin^2x) + (|x|-sin (x[x]))^2)/x^2 :

If f(x)=sin[pi^(2)]x+sin[-pi^(2)]x where [x] denotes the greatest integer less than or equal to x then

int_(0)^(pi//2)(sin^(n)x)/((sin^(n)x+cos^(n)x))dx=?

If f(x)=|(sin x+sin x 2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,sinx,1)|, then the value of int_0^(pi/2) f(x) dx is

Consider f(x)=((2(sin x-sin x-sin^(3)x))+|sin x-sin^(3)x|)/(2(sin x-sin^(3)x)-|sin x-sin^(3)x|),x!=(pi)/(2) for x in(0,pi),f((pi)/(2))=3 where [1 denotes the greatest integer function then,

For x in ((-pi)/(2),(pi)/(2)) , the range of values of values of f(x)=2 +sinx+sin^(3)x+sin^(5)x…..oo