Home
Class 12
MATHS
f'(0) = lim(n->oo) nf(1/n) and f(0)=0 U...

`f'(0) = lim_(n->oo) nf(1/n) and f(0)=0` Using this, find `lim_(n->oo)((n+1)(2/pi)cos^(- 1)(1/n)-n)),|cos^(-1)1/n|

Promotional Banner

Similar Questions

Explore conceptually related problems

FInd lim_(n rarr oo)(2n-1)2^(n)(2n+1)^(-1)2^(1-n)

lim_(n rarr oo)((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is

If |cos^-1(1)/(n)|lt (pi)/(2) , then lim_(n to oo) {(n+1)(2)/(pi)cos^-1.(1)/(n)-n}

If A=[{:(,1,a),(,0,1):}] then find lim_(n-oo) (1)/(n)A^(n)

Find lim_ (n rarr oo) n ^ (n) (1 + n) ^ (- n)

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

" (e) "lim_(n rarr oo)[(n!)/(n^(n))]^(1/n)