Home
Class 12
MATHS
Consider f(x) = lim(x-oo)(x^n-sinx^n)/(x...

Consider `f(x) = lim_(x-oo)(x^n-sinx^n)/(x^n+sinx^n)`for`x>0,x!=1,f(1)=0` then

Promotional Banner

Similar Questions

Explore conceptually related problems

consider f(x)=lim_(x-oo)(x^(n)-sin x^(n))/(x^(n)+sin x^(n)) for x>0,x!=1,f(1)=0 then

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

Lef f(x)=lim_(x rarr0)(x^(2n)sin^(n)x)/(x^(2n)-sin^(2n)x),x!=0 and f(0)=L for some n. If f(x) is continuous at x=0, then

If f(x)=lim_(n rarr oo)(tan pi x^(2)+(x+1)^(n)sin x)/(x^(2)+(x+1)^(n)) then

The equivalent definition of the function f(x)=lim_(n to oo)(x^(n)-x^(-n))/(x^(n)+x^(-n)), x gt 0 , is

f(x)=(x+1)(x+2)(x+2^(2))+...+(x+2^(n-1)) and g(x)=lim_(n rarr oo)((f(x+(1)/(n)))/(f(x)))^(n) if f(x)!=0=0 if f(x)=0 then g(0)=

If f(x)=lim_(n rarr oo)n(x^((1)/(n))-1) then for x>0,y>0,f(xy) is equal to

If f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1) then range of f(x) is