Home
Class 12
MATHS
f(x)=[2x]sin3pixa n df^(prime)(k^(prime)...

`f(x)=[2x]sin3pixa n df^(prime)(k^(prime))=lambdakpi(-1)^k` (where [.] denotes the greatest integer function and `k in N),` then find the value of `lambda` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[2x]sin3pix then prove that f'(k^(+))=6kpi(-1)^(k) , (where [.] denotes the greatest integer function and k in N).

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If f(x)=[2x], where [.] denotes the greatest integer function,then

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

If [.] denotes the greatest integer function then find the value of lim_(n rarr oo)([x]+[2x]+...+[nx])/(n^(2))

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).

f(x)=sin^(-1)[log_(2)((x^(2))/(2))] where [.] denotes the greatest integer function.

f(x)=lim_(nrarroo)cos^(2n)(pix^(2))+[x] (where, [.] denotes the greatest integer function and n in N ) is

Let f(x)=x[x], where [^(*)] denotes the greatest integer function,when x is not an integer then find the value of f'(x)

The function f(x)=lim_(nrarroo)cos^(2n)(pix)+[x] is (where, [.] denotes the greatest integer function and n in N )