Home
Class 12
MATHS
f(x) = lim(n->oo) sin^(2n)(pix)+[x+1/2],...

` f(x) = lim_(n->oo) sin^(2n)(pix)+[x+1/2]`, where [.] denotes the greatest integer function, is

A

continuous ar x=1 but discontinuous at x=3/2

B

cotinuous at x=1 but x=3//2

C

discontinuous at x= 1 and x= 3/2

D

c=discontinous at x=1 but continuous at =3/2

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=lim_(n rarr oo)sin^(2n)(pi x)+[x+(1)/(2)], where [.] denotes the greatest integer function,is

If f(x)=[2x], where [.] denotes the greatest integer function,then

The function f(x)=lim_(nrarroo)cos^(2n)(pix)+[x] is (where, [.] denotes the greatest integer function and n in N )

f(x)=lim_(nrarroo)cos^(2n)(pix^(2))+[x] (where, [.] denotes the greatest integer function and n in N ) is

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

lim_(x rarr1)(x sin(x-[x]))/(x-1) ,where [.]denotes the greatest integer function, is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

lim_(x->0) (lnx^n-[x])/[x], n in N where [x] denotes the greatest integer is

f(x)=sin^(-1)[log_(2)((x^(2))/(2))] where [.] denotes the greatest integer function.