Home
Class 12
MATHS
Number of points where the function f(...

Number of points where the function
`f(x)={(1+["cos"(pix)/2],1ltxle2),(1-{x},0lexlt1),(|sinpix|,-1lexlt0):}`
and `f(1)=0` is continuous but non differentiable :
(where [.] denotes greatest integer function and {.} denotes fractional part function)

A

0

B

1

C

2

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the function f(x) = {x+2} [cos 2x] (where [.] denotes greatest integer function & {.} denotes fractional part function.)

f(x) = [x-1] + {x)^{x}, x in (1,3), then f^-1(x) is- (where [.] denotes greatest integer function and (J denotes fractional part function)

Solve (1)/(x)+(1)/([2x])={x}+(1)/(3) where [.] denotes the greatest integers function and {.} denotes fractional part function.

The function f(x)={x} sin (pi[x]) , where [.] denotes the greatest integer function and {.} is the fractional part function, is discontinuous at

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)

Number of points of discontinuity of f(x)={(x)/(5)}+{(x)/(2)} in x in[0,100] is/are (where [-] denotes greatest integer function and {:} denotes fractional part function)