Home
Class 12
MATHS
If f(x)=lim(t->oo)((|alpha+sin pi x|)^t...

If `f(x)=lim_(t->oo)((|alpha+sin pi x|)^t-1)/((|alpha+sinpi x|)^t+1) , x in (0,6)` then

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

If quad f(x)=lim_(t rarr oo)((| alpha+sin pi x|)^(t)-1)/((| alpha+sin pi x|)^(t)+1),x in(0,6)

lim_(x rarr oo)(sin alpha-alpha sin x)/(x-alpha)

lim_(x rarr0)(sin(alpha+x)-sin(alpha-x))/(cos(alpha+x)-cos(alpha-x))

lim_(x rarr oo)sqrt((x+cos alpha)/(x+sin alpha))=

If f(x)=lim_(t to 0)[(2x)/(pi).tan^(-1)(x/(t^(2)))] ,then f(1) is …….

f(x)=lim_(n rarr oo)(tan pi x^(2)+(x+1)^(n)sin x)/(x^(2)+(x+1)^(n)), find lim_(x rarr0)f(x)

If f(n)=(lim)_(xrarroo)((1+sinpi/2)(1+sinpi/(2^2))(1+sinpi/(2^n)))^(1/x) then (lim)_(nrarro)f(n)= 1 b. e c. 0 d. oo

f(x)=int_(0)^(x)(e^(t)-1)(t-1)(sin t-cos t)sin tdt,AA x in(-(pi)/(2),2 pi) then f(x) is decreasing in :

Let f:(0, pi)->R be a twice differentiable function such that (lim)_(t->x)(f(x)sint-f(x)sinx)/(t-x)=sin^2x for all x in (0, pi) . If f(pi/6)=-pi/(12) , then which of the following statement(s) is (are) TRUE? f(pi/4)=pi/(4sqrt(2)) (b) f(x)<(x^4)/6-x^2 for all x in (0, pi) (c) There exists alpha in (0, pi) such that f^(prime)(alpha)=0 (d) f"(pi/2)+f(pi/2)=0