Home
Class 12
MATHS
Let f(x) ={{:(x^(2)+a, 0 le x lt1),( 2x+...

Let `f(x) ={{:(x^(2)+a, 0 le x lt1),( 2x+b, ale x le 2):}` and ` g(x) ={{:(3x+b,0 le xlt1),( x^(3), 1le x le 2):}` if `(df)/(dg)` exists at x=1, then

A

a=-1

B

b=-2

C

`((df)/(dg))_(x=1)=2//3`

D

`a=+-1, b=+- 2`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Let f (x)= [{:(x ^(2)+a,0 le x lt 1),( 2x+b,1le x le 2):}and g (x)=[{:(3x+b,0 le x lt 1),(x ^(3), 1 le x le 2):} If derivative of f(x) w.r.t. g (x ) at x =1 exists and is equal to lamda, then which of the followig is/are correct?

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

{{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if l lt x le 2):} at x = 1

{{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if l lt x le 2):} at x = 1

If f(x)={{:(,(x^(2))/(2),0 le x lt 1),(,2x^(2)-3x+(3)/(2),1 le x le 2):} then,

The relation f is defined by f(x) ={(3x+2", "0le x le2),(x^(3)", "2 le x le 5):}. The relation g is defined by g(x) ={(3x+2", "0le x le1),(x^(3)", "1 le x le 5):} Show that f is a function and g is not a function