Home
Class 12
MATHS
Consider f(x) =x^(2)+ax+3 and g(x) =x+b...

Consider `f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim_( n to oo) (f(x)+x^(2n)g(x))/(1+x^(2n))`
if F(x) is continuous at `x=+-1,` then f(X) =2g(X) has

A

imaginary roots

B

both the roots positive

C

both the roots negative

D

roots of oppostie signs

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given functions and the limit expression provided in the question. ### Step 1: Define the Functions We have: - \( f(x) = x^2 + ax + 3 \) - \( g(x) = x + b \) ### Step 2: Define the Limit Function The limit function is defined as: \[ F(x) = \lim_{n \to \infty} \frac{f(x) + x^{2n}g(x)}{1 + x^{2n}} \] ### Step 3: Analyze the Limit as \( n \to \infty \) 1. **For \( |x| > 1 \)**: As \( n \to \infty \), \( x^{2n} \) dominates both the numerator and denominator. \[ F(x) = \lim_{n \to \infty} \frac{x^{2n}g(x)}{x^{2n}} = g(x) = x + b \] 2. **For \( |x| < 1 \)**: As \( n \to \infty \), \( x^{2n} \) approaches 0. \[ F(x) = \lim_{n \to \infty} \frac{f(x)}{1} = f(x) = x^2 + ax + 3 \] 3. **For \( |x| = 1 \)**: We need to check continuity at \( x = 1 \) and \( x = -1 \). ### Step 4: Check Continuity at \( x = 1 \) We need: \[ F(1^-) = F(1) = F(1^+) \] - \( F(1^-) = f(1) = 1^2 + a(1) + 3 = 4 + a \) - \( F(1) = g(1) = 1 + b \) - \( F(1^+) = g(1) = 1 + b \) Setting these equal gives: \[ 4 + a = 1 + b \quad \text{(1)} \] ### Step 5: Check Continuity at \( x = -1 \) We need: \[ F(-1^-) = F(-1) = F(-1^+) \] - \( F(-1^-) = f(-1) = (-1)^2 + a(-1) + 3 = 4 - a \) - \( F(-1) = g(-1) = -1 + b \) - \( F(-1^+) = g(-1) = -1 + b \) Setting these equal gives: \[ 4 - a = -1 + b \quad \text{(2)} \] ### Step 6: Solve the System of Equations From equations (1) and (2): 1. \( 4 + a = 1 + b \) implies \( b = 3 + a \) 2. \( 4 - a = -1 + b \) implies \( b = 5 + a \) Setting the two expressions for \( b \) equal: \[ 3 + a = 5 + a \] This leads to a contradiction unless we analyze further. ### Step 7: Find Values of \( a \) and \( b \) From the equations: 1. \( b = 3 + a \) 2. \( b = 5 + a \) Setting them equal gives: \[ 3 + a = 5 + a \implies 3 = 5 \quad \text{(not possible)} \] Thus, we need to find values of \( a \) and \( b \) such that \( f(x) = 2g(x) \). ### Step 8: Set Up the Equation \( f(x) = 2g(x) \) Substituting: \[ x^2 + ax + 3 = 2(x + b) \] This simplifies to: \[ x^2 + (a - 2)x + (3 - 2b) = 0 \] ### Step 9: Determine Conditions for Roots For the quadratic equation to have roots of opposite signs, the product of the roots must be negative: \[ 3 - 2b < 0 \implies b > \frac{3}{2} \] ### Step 10: Conclusion The roots of the equation \( f(x) = 2g(x) \) will be of opposite signs if \( b > \frac{3}{2} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f (x) =x ^(2) +ax+3 and g (x) =x+b, where F (x) =lim _(xto oo) (f(x) +(x^(2))g (x))/(1+(x ^(2))^(n)). If F (x) is continous at x=1 and x=-1 then find the value of (a^(2) +b ^(2))

If f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1) then range of f(x) is

Let f(x)=lim_(n to oo) sinx/(1+(2 sin x)^(2n)) then f is discontinuous at

Find the values of a if f(x)=(lim)_(n rarr oo)(ax^(2n)+2)/(x^(2n)+a+1) is continuous at x=1

Let f(x)=lim_( n to oo) (x^(2n-1) + ax^2 +bx)/(x^(2n) +1) . If f is continuous for x in R , then the value of a+8b is

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

Let f(x)=lim_(n rarr oo)(x^(2n-1)+ax^(2)+bx)/(x^(2n)+1). If f(x) is continuous for all x in R then find the values of a and b.

The function f(x) .defined as f(x)=lim_(n rarr oo)(f(x)+x^(2n)g(x))/(1+x^(2n)) shall be continuous every where,if