Home
Class 12
MATHS
Let f(x)={x/2-1,0lt=xlt=1 1/2,1lt=xlt=2}...

Let `f(x)={x/2-1,0lt=xlt=1 1/2,1lt=xlt=2}g(x)=(2x+1)(x-k)+3,0<=x<=oo then g(f(x))` is continuous at x=1 if k equal to:

Text Solution

Verified by Experts

The correct Answer is:
6
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=m a xi mu m{x^3, x^2,1/(64)}AAx in [0,oo),t h e n f(x)={x^2,0lt=xlt=1x^3,x >0 f(x)={1/(64),0lt=xlt=1/4x^2,1/4 1 f(x)={1/(64),0lt=xlt=1/8x^2,1/8 1 f(x)={1/(64),0lt=xlt=1/8x^3,x >1/8

Evaluate the following integral: int_0^9f(x)dx ,\ w h e r e\ f(x){sinx ,\ 0lt=xlt=pi//2 1,pi/2lt=xlt=3e^(x-3),\ 3lt=xlt=9

Let f(x)={1+(2x)/a ,0lt=x<1 and ax ,1lt=x<2 If lim_(x->1)f(x) exists ,then a is (a) 1 (b) -1 (c) 2 (d) -2

If f(x) = {(3x+1,;0lt=xlt=2), (1+9x,;2ltxlt3),(30+2x,;xgt=3):} find (i) f(1) (ii) f(5/2) (iii) f(4)

If f(x)={(x^2)/2 , if 0lt=xlt=1 2x^2-3x+3/2 , if 1

The range of values of a for which the function f(x)={-x^3+cos^(-1)a , 0lt=x<1x , 1lt=xlt=3 has the smallest value at x=1, is [cos2, 1] (b) [-1,cos2] [0, 1] (d) [-1, 1]

Let f(x)=min{x-[x|,-[-x)],-2lt=xlt=2,g(x)=|2-|x-2||,-2lt=xlt=2 and h(x)=(|sinx|)/sinx,-2 leq x leq2 and x != 0 be three given functions where [x] denotes the greatest integer leq x Then The number of solution(s) of the equation x^2+(f(x^))^2=1(-1 leq x leq 1) is/are

The relation f is defined by f(x)={x^2,""0lt=xlt=3 3x ,""""3lt=xlt=10 The relating g is defined by g(x)={x^2,""0lt=xlt=3 3x ,""""2lt=xlt=10 Show that f is a function and g is not a function.