Home
Class 12
MATHS
Let f(1) : R to R, f(2) [0,oo) to R,f(3)...

Let `f_(1) : R to R, f_(2) [0,oo) to R,f_(3): Rto R and f_(4) : R to [0,oo) ` be defined by
`f_(1)(x) {{:( |x| if , xlt0),(e^(x) if, xge0):} , f_(2) (x) = x^(2)`,
`f_(3) (x) ={{:( sin x if ,x lt 0),( x if , x le 0):}`and
`f_(4) (x) ={{:( f_(2)(f_(1)(x)),if x lt0),( f_(2) (f_(1)(x))-1, if x gt 0):}`
match the statements / expressoons given in LIstI with the values given in List II.

A

`{:(a,b,c,d),( r,p,s,q):}`

B

`{:(a,b,c,d),( p,r,s,q):}`

C

`{:(a,b,c,d),( r,p,q,s):}`

D

`{:(a,b,c,d),( p,r,q,s):}`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(1):R to R, f_(2):[0,oo) to R, f_(3):R to R and f_(4):R to [0,oo) be a defined by f_(1)(x)={{:(,|x|,"if "x lt 0),(,e^(x),"if "x gt 0):}:f_(2)(x)=x^(2),f_(3)(x)={{:(,sin x,"if x"lt 0),(,x,"if "x ge 0):} and f_(4)(x)={{:(,f_(2)(f_(1)(x)),"if "x lt 0),(,f_(2)(f_(1)(f_(1)(x)))-1,"if "x ge 0):} Then, f_(4) is

Let f_(1) : R to R, f_(2) : [0, oo) to R, f_(3) : R to R be three function defined as f_(1)(x) = {(|x|, x < 0),(e^x , x ge 0):}, f_(2)(x)=x^2, f_(3)(x) = {(f_(2)(f_1(x)),x < 0),(f_(2)(f_1(x))-1, x ge 0):} then f_3(x) is:

If f: R to R be defined by f(x)={(2x:xgt3),(x^(2):1lt x le 3),(3x:x le 1):} Then, f(-1)+f(2)+f(4) is

Let f: R -{0} to R be defined by f(x) =x + 1/x , then range of g(x) = (f(x))^(4) - f(x^(4)) - 4(f(x))^(2) , is

f:(0,oo)rarr(0,oo) defined by f(x)={2^(x),x in(0,1)5^(x),x in[1,oo) is

If f:R rarr R defined by f(x)=2x+5, if x>0=3x-2, if x<=0: then f is

The function {:(f:R to R:f(x) = 1, if x gt 0),(" "= 0, if x =0),(" "=-1, if x lt0is a):}

if f(x)={{:(2+x,xge0),(2-x,xlt0):} then lim_(x to 0) f(f(x)) is equal to