Home
Class 12
MATHS
0+tan(3)/(4)+tan(9)/(5)-tan(8)/(19)=(pi)...

0+tan(3)/(4)+tan(9)/(5)-tan(8)/(19)=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: tan^(-1)(1)/(7)+tan^(-1)(1)/(13)=tan^(-1)(2)/(9)tan^(-1)+tan^(-1)(1)/(5)+tan^(-1)(1)/(8)=(pi)/(4)tan^(-1)(3)/(4)+tan^(-1)(3)/(5)-tan^(-1)(8)/(19)=(pi)/(4)tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)(1)/(13)

Prove that tan^(-1)""(3)/(4)+tan^(-1)""(3)/(5)-tan^(-1)""(8)/(19)=(pi)/(4)

Prove that: tan^(-1)(3/4)+tan^(-1)(3/5)-tan^(-1)(8/19)=pi/4

Prove that : tan^-1(3/4) + tan^-1(3/5)- tan^-1(8/19) = pi/4

Prove that tan^(-1)3/4+tan^(-1)3/5-tan^(-1)8/19=pi/4 .

What of the value of tan.(pi)/(8).tan.(pi)/(12).tan.(pi)/(4).tan.(3pi)/(8)tan.(5pi)/(12) ?

Prove that: tan^(-1)(1/7)+tan^(-1)(1/(13))=tan^(-1)(2/9) tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4 tan^(-1)(3/4)+tan^(-1)(3/5)-tan^(-1)(8/19)=pi/4

If tan((pi)/(4)+theta)+tan((pi)/(4)-theta)=a then tan^(3)((pi)/(4)+theta)+tan^(3)((pi)/(4)-theta)=

tan((pi)/(20))tan(3(pi)/(20))tan(5(pi)/(20))tan(7(pi)/(20))tan(9(pi)/ (20))