Home
Class 12
MATHS
f(x)=(2^x-1)^2 /(tanxlog(1+x)) , x!=0 an...

`f(x)=(2^x-1)^2 /(tanxlog(1+x)) , x!=0` and `f(x)=2log2 , x=0` at `x=0` is:

Promotional Banner

Similar Questions

Explore conceptually related problems

'f(x)={(e^(^^)x-1)/(log(1+2x)),|x!=0Kx=0at

If f(x) {:( =((2^(x)-1)^(2))/(sin x.log(1+x))", if " x != 0 ),(= 2 log 2", if " x = 0 " ) :} then , at x = 0 the function f is

f(x) {:( =((2^(x)-1)^(2))/(sin x.log(1+x))", if " x != 0 ),(= 2 log 2", if " x = 0 " ) :} , at x = 0 the function f is

f(x)={(log(1+2ax)-log(1-bx))/(x),x!=0x=0

if f(x)=e^(-(1)/(x^(2))),x>0 and f(x)=0,x<=0 then f(x) is

The function f(x)=((3^x-1)^2)/(sinx*ln(1+x)), x != 0, is continuous at x=0, Then the value of f(0) is

The function f(x)=((3^(x)-1)^(2))/(sin x*ln(1+x)),x!=0, is continuous at x=0, Then the value of f(0) is