Home
Class 12
MATHS
If f(x) is continuous at x=a,a>0, where ...

If `f(x)` is continuous at `x=a,a>0`, where `f(x)=[(a^x-x^a)/(x^x-a^a)`, for `x!=a`, -1 for x=a, then `a=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is continuous at x=a , where f(x)=(x-a)sin((1)/(x-a)) , for x!=a , then f(a)=

If f(x) is continuous at x=0 , where f(x)=(4^(x)-e^(x))/(6^(x)-1) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((4-3x)/(4+5x))^(1/x)", for " x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(e^(x^(2))-cosx)/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x)/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)={:{((1-cos x)/(x)", for " x!=0),(k ", for" x = 0 ):} , then k=

If f(x) is continuous at x=0 , where f(x)=(sin(x^(2)-x))/(x) , for x!=0 , then f(0)=