Home
Class 11
MATHS
[" ILLUSTRATION "8.54],[" Prove that "su...

[" ILLUSTRATION "8.54],[" Prove that "sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k)=(-1)^(n)*^(3n-1)C_(n)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sum_(k=1)^(n)(1)/(k(k+1))=1-(1)/(n+1).

Prove that sum_(k=1)^(n-r ) ""^(n-k)C_(r )= ""^(n)C_( r+1) .

prove that sum_(k=1)^(n)k2^(-k)=2[1-2^(-n)-n*2^(-(n+1)))

Prove that : sum_(i=0)^r((n+i),(k))=((n+r+1),(k+1))-((n),(k+1))

Prove that sum_(k=1)^n 1/(k(k+1))=1−1/(n+1) .

sum_(k=1)^(oo)k(1-(1)/(n))^(k-1)=a*n(n-1)bn(n+1)c*n^(2)d.(n+1)^(2)

sum_(k =1)^(n) k(1 + 1/n)^(k -1) =

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is