Home
Class 11
MATHS
6.0.2(6)" Prove that "cos^(-1)(-x)=pi-co...

6.0.2(6)" Prove that "cos^(-1)(-x)=pi-cos^(-1)x

Promotional Banner

Similar Questions

Explore conceptually related problems

If |x|<=1 then prove that cos^(-1)(-x)=pi-cos^(-1)x

prove that cos^-1(sinx)= pi/2-x

Prove that : sin^(-1)x+cos^(-1)x=(pi)/(2)

Prove that cos^(-1)(x)+ cos^(-1){(x)/(2)+sqrt(3-3x^(2))/(2)}=(pi)/(3) .

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))

If x<0, then prove that cos^(-1)x=pi-sin^(-1)sqrt(1-x^2)

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))

If cos^(-1)x+cos^(-1)y=pi/2 then prove that cos^(-1)x=sin^(-1)y

If 1/(sqrt(2))