Home
Class 11
MATHS
|[alpha,alpha^(2),beta+gamma],[beta,beta...

|[alpha,alpha^(2),beta+gamma],[beta,beta^(2),gamma+alpha],[gamma,gamma^(2),alpha+beta]|=(beta-gamma)(gamma-alpha)(alpha-beta)(alpha+beta+gamma)

Promotional Banner

Similar Questions

Explore conceptually related problems

Using peoperties of determinants in questions 11 to 15, prove that : |{:(alpha,alpha^(2),beta+gamma),(beta,beta^(2),gamma+alpha),(gamma,gamma^(2),alpha+beta):}|=(beta-gamma)(gamma-alpha)(alpha-beta+gamma)

Using properties of determinants in Exercise 11 to 15 prove that |{:(alpha,alpha^2,beta+gamma),(beta,beta^2,gamma+alpha),(gamma,gamma^2,alpha+beta):}|=(beta-gamma)(gamma-alpha)(alpha+beta+gamma)(alpha-beta)

Using properties of determinants in Exercises prove that : {:[( alpha , alpha ^(2) , beta +gamma ),( beta , beta ^(2) , gamma +alpha ),( gamma , gamma ^(2) ,alpha +beta ) ]:} =(beta -gamma ) (gamma -alpha ) (alpha -beta ) (alpha +beta +gamma )

Prove the following : |{:(alpha,alpha^(2),beta+gamma),(beta,beta^(2),gamma+alpha),(gamma,gamma^(2),alpha+beta):}|=|{:(alpha,beta, gamma),(alpha^(2),beta^(2),gamma^(2)),(beta+gamma,gamma+alpha, alpha+beta):}|=(beta-gamma)(gamma-alpha)(alpha-beta)(alpha+beta+gamma)

Prove that, gammaalpha ^ (2), beta ^ (2), gamma ^ (2) beta + alpha, gamma + alpha, alpha + beta] | = (beta-gamma) (gamma-alpha) (alpha-beta) ( alpha + beta + gamma)

Without expanding the determinant, prove that: (i) |{:(alpha, alpha^(2), beta gamma),(beta, beta^(2), gamma alpha),(gamma, gamma^(2), alpha beta):}| =|{:(1,alpha^(2), alpha^(3)),(1, beta^(2), beta^(3)),(1, gamma^(2), gamma^(3)):}|

Prove that |[alpha,beta,gamma] ,[alpha^2,beta^2,gamma^2] , [beta+gamma, gamma+alpha, beta+alpha]| = (alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

Prove that: |[alpha,beta,gamma],[alpha^2,beta^2,gamma^2],[beta+gamma,gamma+alpha,alpha+beta]|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma) .