Home
Class 11
MATHS
(cos^(2)B-cos^(2)C)/(b+c)+(cos^(2)C-cos^...

(cos^(2)B-cos^(2)C)/(b+c)+(cos^(2)C-cos^(2)A)/(c+a)+(cos^(2)A-cos^(2)B)/(a+b)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle A B C , prove that following: \ (cos^2B-cos^2C)/(b+c)+(cos^2C-cos^2A)/(c+a)+(cos^2A-cos^2B)/(a+b)=0

In any Delta ABC, prove that :a^(2)(cos^(2)B-cos^(2)C)+b^(2)(cos^(2)C-cos^(2)A)+c^(2)(cos^(2)A-cos^(2)B)=0

a^(2)(cos^(2)B-cos^(2)C)+b^(2)(cos^(2)C-cos^(2)A)+c^(2)(cos^(2)A-cos^(2)B)=0

(iv) a^(2)(cos^(2) B - cos^(2)C) + b^(2) (cos^(2) C- cos^(2)A) + c^(2) (cos^(2)A- cos^(2)B)=0

In /_\ABC prove that a^2(cos^2B-cos^2C)+b^2(cos^2C-cos^2A)+c^2(cos^2A-cos^2B) = 0

In Delta ABC prove that a^2(cos^2B - cos^2C) + b^2(cos^2C - cos^2A) + c^2(cos^2A - cos^2B) = 0

a^2(cos^2B-cos^2C)+b^2(cos^2C-cos^2A)+c^2(cos^2A-cos^2B)=0 .

(b^(2)-c^(2))/(a)cos A+(c^(2)-a^(2))/(b)cos B+(a^(2)-b^(2))/(c)cos C=0

(v) (b^(2)-c^(2))/(cos B + cos C) + (c^(2)-a^(2))/( cos C + cosA) + (a^(2)-b^(2))/(cos A + cos B)=0

In any Delta ABC, prove that :(b^(2)-c^(2))/(cos B+cos C)+(c^(2)-a^(2))/(cos C+cos A)+(a^(2)-b^(2))/(cos A+cos B)=0